Heliyon (Oct 2024)
Unveiling the apoptotic potential of antioxidant-rich Bangladeshi medicinal plant extractives and computational modeling to identify antitumor compounds
Abstract
Nowadays, there has been a significant surge in the exploration of anticancer compounds derived from medicinal plants due to their perceived safety and efficacy. Therefore, our objective was to investigate the antioxidant and antiproliferative properties, along with the phytoconstituents, of methanol extracts from various parts of 15 selected Bangladeshi medicinal plants. Standard spectrophotometric methods and confocal microscopy were utilized to assess the antioxidant and antiproliferative potential of these extracts. Additionally, phytochemical profiling was executed through gas chromatography-mass spectrometry (GC-MS) analysis. Among the extractives, Bombax ceiba bark exhibited the highest scavenging capacity against DPPH (IC50: 10.3 ± 0.7 μg/mL) and hydroxyl (IC50: 3.9 ± 0.1 μg/mL) free radicals. Furthermore, the total antioxidants, reducing power, and polyphenols of B. ceiba bark were higher than those of other extracts. B. ceiba bark also showed significant antiproliferative capacity against MCF-7 cells (86.67 %) in the MTT assay, followed by Cocos nucifera roots (83.92 %), Bixa orellana leaves (44.09 %), and Leea macrophylla roots (25 %). Moreover, B. ceiba bark, L. macrophylla roots, C. nucifera roots, and B. orellana leaves-treated Ehrlich ascites carcinoma (EAC) cells demonstrated growth inhibition rates of 87.27 %, 80.45 %, 42.9 %, and 37.27 %, respectively. Fluorescence microscopic analysis of EAC cells treated with these extracts revealed apoptotic features such as condensed chromatin, cell shrinkage, nucleus fragmentation, and membrane blebbing compared to untreated EAC cells. The GC-MS analysis of B. ceiba bark identified 18 compounds, including various alcohols, alkenes, and esters. Additionally, a molecular docking study revealed oxalic acid, cyclohexyl dodecyl ester as the most potent compound (−6.5) active against breast cancer. In summary, our results demonstrate that B. ceiba bark possesses robust antioxidant and antiproliferative properties, along with potent antitumor compounds, which could be utilized in the treatment of carcinoma.