Physics Letters B (Oct 2017)

Far-from-equilibrium initial conditions probed by a nonlocal observable

  • L. Shahkarami,
  • H. Ebrahim,
  • M. Ali-Akbari,
  • F. Charmchi

Journal volume & issue
Vol. 773
pp. 91 – 97

Abstract

Read online

Using the gauge/gravity duality, we investigate the evolution of an out-of-equilibrium strongly-coupled plasma from the viewpoint of the two-point function of scalar gauge-invariant operators with large conformal dimension. This system is out of equilibrium due to the presence of anisotropy and/or a massive scalar field. Considering various functions for the initial anisotropy and scalar field, we conclude that the effect of the anisotropy on the evolution of the two-point function is considerably more than the effect of the scalar field. We also show that the ordering of the equilibration time of the one-point function for the non-probe scalar field and the correlation function between two points with a fixed separation can be reversed by changing the initial configuration of the plasma, when the system is out of the equilibrium due to the presence of at least two different sources like our problem. In addition, we find the equilibration time of the two-point function to be linearly increasing with respect to the separation of the two points with a fixed slope, regardless of the initial configuration that we start with. Finally we observe that, for larger separations the geodesic connecting two points on the boundary crosses the event horizon after it has reached its final equilibrium value, meaning that the two-point function can probe behind the event horizon.