Кібербезпека: освіта, наука, техніка (Mar 2023)

КОМПЛЕКСНИЙ МЕТОД ПО АВТОМАТИЧНОМУ РОЗПІЗНАВАННЮ ПРИРОДНЬОЇ МОВИ ТА ЕМОЦІЙНОГО СТАНУ

  • Ievgen Iosifov

DOI
https://doi.org/10.28925/2663-4023.2023.19.146164
Journal volume & issue
Vol. 3, no. 19
pp. 146 – 164

Abstract

Read online

Поточні тенденції в NLP наголошують на універсальних моделях та навчанні з передварительно навчених моделей. У цій статті досліджуються ці тенденції та передові моделі попереднього навчання. Вхідні дані перетворюються на слова або контекстуальні вбудовування, які слугують вхідними даними для енкодерів та декодерів. В якості об’єкту дослідження використовується корпус публікацій автора статті за останні шість років. Основними методами дослідження є аналіз наукової літератури, прототипування і експериментальне використання систем за напрямком досліджень. Гравці розпізнавання мови розділилися на гравців з величезними обчислювальними ресурсами для котрих тренування на великих нелейбованих даних є звичною процедурою, і гравців які сфокусовані на тренуванні малих локальних моделей розпізнавання мови на попередньо розмічених аудіо даних через нестачу ресурсів. Підходи і фреймворки роботи з нелейбованими даними і обмеженими обчислювальними ресурсами майже не представлені, а методики базовані на ітеративних тренуваннях не розвинуті і потребують наукових зусиль для розвитку. Дослідження має на меті розвинути методики ітеративного тренування на нерозмічених аудіо даних для отримання продуктивно готових моделей розпізнавання мови з більшою точністю і обмеженими ресурсами. Окремим блоком запроновані методи підготовки даних для використанні в тренуванні систем розпізнавання мови і конвейер автоматичного тренування систем розпізнавання мови використовуючи псевдо розмітку аудіо даних. Прототип і вирішення реальної бізнес задачі з виявлення емоцій демонструють можливості і обмеження систем розпізнавання сови та емоційних станів. З використанням запропонованих методів псевдо-лейбування вдається без значних інвестицій в обчислювальні ресурси отримати точність розпізнавання близьку до лідерів ринку а для мов з незначною кількістю відкритих даних навіть перевершити.

Keywords