Cells (Apr 2024)

5-Hydroxymethylcytosine in Cell-Free DNA Predicts Immunotherapy Response in Lung Cancer

  • Jianming Shao,
  • Yitian Xu,
  • Randall J. Olsen,
  • Saro Kasparian,
  • Kai Sun,
  • Sunil Mathur,
  • Jun Zhang,
  • Chuan He,
  • Shu-Hsia Chen,
  • Eric H. Bernicker,
  • Zejuan Li

DOI
https://doi.org/10.3390/cells13080715
Journal volume & issue
Vol. 13, no. 8
p. 715

Abstract

Read online

Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03–0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02–0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8–94.5%) versus 0.0% (95% CI, 0.0–60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4–97.5%) versus 0.0% (95% CI, 0.0–36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.

Keywords