Scientific Reports (Sep 2024)
Implicit sensorimotor learning in ballistic movement for transporting an object to a target
Abstract
Abstract To enhance and sustain movement accuracy, humans make corrections in subsequent trials based on previous errors. Trial-by-trial learning occurs unconsciously and has mostly been studied using reaching movements. Goal-directed projection movements, such as archery, have an inherent delay between releasing an object and observing an outcome (e.g. the arrival position of the object), and this delay may prevent trial-by-trial implicit learning. We aimed to investigate the learning in the projection movement and the impacts of the inherent delay. During the experiment, a joystick was flicked once to transport a cursor from the starting location to a target. To manipulate the length of the delay between the cursor release and outcome observation, the speed of the cursor movement was varied: a fast speed can lead to a short delay. We found trial-by-trial implicit learning under all speed conditions, and the error sensitivity was not significantly different across speed conditions. Furthermore, the error sensitivity depended on the target location, that is, the movement direction. The results indicate that trial-by-trial implicit learning occurred in goal-directed projection movement, despite the length of the inherent delay. Additionally, the degree of this learning was affected by the movement direction.
Keywords