Carbon Resources Conversion (Mar 2024)

Optimal aeration management strategy for a small-scale food waste composting

  • Jia Chi Lai,
  • Yi Lung Then,
  • Siaw San Hwang,
  • Chung Sien Lee

Journal volume & issue
Vol. 7, no. 1
p. 100190

Abstract

Read online

Food waste is a significant contributor to greenhouse gas emissions when it ends up in landfills. Composting turns out to be a sustainable solution to this problem, but it requires controlled and continuous airflow for optimal performance. This study focused on the effect of aeration rates and airflow directions on food waste composting using a closed system with forced aeration. Air was entered into the composting vessel in three directions, which were upward, downward, and a combination of both directions. Each direction was run at aeration rates of 0.1, 0.4, and 0.7 L/min. The findings showed that the compost pile aerated at 0.4 L/min by using two-directional airflow can reach the thermophilic temperature within half of the day. The compost pile achieved temperature of 40.94 °C after 10.5 h. Although the compost experienced slightly high in moisture loss (4.3%), the compost still attained the standard values for maturity. The compost produced from food waste could be applied in soil to improve its fertility.

Keywords