Pharmaceuticals (Aug 2010)

Pharmacogenetics of Anti-Diabetes Drugs

  • Johanna K. DiStefano,
  • Richard M. Watanabe

DOI
https://doi.org/10.3390/ph3082610
Journal volume & issue
Vol. 3, no. 8
pp. 2610 – 2646

Abstract

Read online

A variety of treatment modalities exist for individuals with type 2 diabetes mellitus (T2D). In addition to dietary and physical activity interventions, T2D is also treated pharmacologically with nine major classes of approved drugs. These medications include insulin and its analogues, sulfonylureas, biguanides, thiazolidinediones (TZDs), meglitinides, α-glucosidase inhibitors, amylin analogues, incretin hormone mimetics, and dipeptidyl peptidase 4 (DPP4) inhibitors. Pharmacological treatment strategies for T2D are typically based on efficacy, yet favorable responses to such therapeutics are oftentimes variable and difficult to predict. Characterization of drug response is expected to substantially enhance our ability to provide patients with the most effective treatment strategy given their individual backgrounds, yet pharmacogenetic study of diabetes medications is still in its infancy. To date, major pharmacogenetic studies have focused on response to sulfonylureas, biguanides, and TZDs. Here, we provide a comprehensive review of pharmacogenetics investigations of these specific anti-diabetes medications. We focus not only on the results of these studies, but also on how experimental design, study sample issues, and definition of ‘response’ can significantly impact our interpretation of findings. Understanding the pharmacogenetics of anti-diabetes medications will provide critical baseline information for the development and implementation of genetic screening into therapeutic decision making, and lay the foundation for “individualized medicine” for patients with T2D.

Keywords