Mathematical and Computational Applications (Dec 2022)

Deep Convolutional Neural Network for Detection and Prediction of Waxy Corn Seed Viability Using Hyperspectral Reflectance Imaging

  • Xiaoqing Zhao,
  • Lei Pang,
  • Lianming Wang,
  • Sen Men,
  • Lei Yan

DOI
https://doi.org/10.3390/mca27060109
Journal volume & issue
Vol. 27, no. 6
p. 109

Abstract

Read online

This paper aimed to combine hyperspectral imaging (378–1042 nm) and a deep convolutional neural network (DCNN) to rapidly and non-destructively detect and predict the viability of waxy corn seeds. Different viability levels were set by artificial aging (aging: 0 d, 3 d, 6 d, and 9 d), and spectral data for the first 10 h of seed germination were continuously collected. Bands that were significantly correlated (SC) with moisture, protein, starch, and fat content in the seeds were selected, and another optimal combination was extracted using a successive projection algorithm (SPA). The support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and deep convolutional neural network (DCNN) approaches were used to establish the viability detection and prediction models. During detection, with the addition of different levels, the recognition effect of the first three methods decreased, while the DCNN method remained relatively stable (always above 95%). When using the previous 2.5 h data, the prediction accuracy rate was generally higher than the detection model. Among them, SVM + full band increased the most, while DCNN + full band was the highest, reaching 98.83% accuracy. These results indicate that the combined use of hyperspectral imaging technology and the DCNN method is more conducive to the rapid detection and prediction of seed viability.

Keywords