Biomedicines (Aug 2022)

Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics

  • Dixit V. Bhalani,
  • Bhingaradiya Nutan,
  • Avinash Kumar,
  • Arvind K. Singh Chandel

DOI
https://doi.org/10.3390/biomedicines10092055
Journal volume & issue
Vol. 10, no. 9
p. 2055

Abstract

Read online

The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.

Keywords