Pribory i Metody Izmerenij (Sep 2019)

Application of Magnetic Noise Method to Control the Mechanical Anisotropy of Ferromagnetic Materials

  • V. N. Busko,
  • A. A. Osipov

DOI
https://doi.org/10.21122/2220-9506-2019-10-3-281-292
Journal volume & issue
Vol. 10, no. 3
pp. 281 – 292

Abstract

Read online

Presence of anisotropy of the ferromagnetic materials' properties determines the need for its research and control, since it has a significant impact on the basic physicomechanical characteristics of details, products and constructions. The aim of the work was to experimentally investigate the possibility of using the magnetic noise method for non-destructive testing of mechanical properties of ferromagnetic materials particularly value of the coefficient of normal anisotropy Rn of sheet metal, mechanical stresses under elastic deformation of electrical steel and the anisotropy of the physical and mechanical properties of ferromagnetic materials.Since the mechanical anisotropy is related to the magnetic anisotropy, the magnetic method of the Barkhausen effect (MBE) was used in its study, the informative parameters of which belong to the group of magnetic anisotropy. Comparison of the results of anisotropy evaluation on a set of samples of stamped sheet steel using the MBE with values Rn measured by the manufacturer showed their close match. This revealed the possibility of Rn level evaluation using the MBE. Device for circular rotation of the Barkhausen transducer on the sample surface and device for forming of elastic bending stresses in the sample were constructed. To study the magnetic anisotropy in various materials and the impact of elastic tensile and compressive stresses by bending on it using the MBE.It has been found that the elastic deformation in samples of electrical steel leads to dramatic change of the magnetic noise level and the shape of the circular diagrams, taking into account the sign of the stresses generated in the sample. It was established that as a result of cold rolling in the production process, electrical steel samples have a pronounced texture due to the direction of rolled sheet. The created elastic stresses in the considered range practically do not change the texture (induced crystallographic anisotropy) after the material rolling.The results can be useful for studying, monitoring and testing of anisotropy, crystallographic texture, structural heterogeneity of ferromagnetic materials in the form of sheet metal, sheet steel and coil steel, sheet metal forming and for solving other problems using the magnetic noise method in aboratory and workshop conditions.

Keywords