PLoS ONE (Jan 2017)

A simulated annealing heuristic for maximum correlation core/periphery partitioning of binary networks.

  • Michael Brusco,
  • Hannah J Stolze,
  • Michaela Hoffman,
  • Douglas Steinley

DOI
https://doi.org/10.1371/journal.pone.0170448
Journal volume & issue
Vol. 12, no. 5
p. e0170448

Abstract

Read online

A popular objective criterion for partitioning a set of actors into core and periphery subsets is the maximization of the correlation between an ideal and observed structure associated with intra-core and intra-periphery ties. The resulting optimization problem has commonly been tackled using heuristic procedures such as relocation algorithms, genetic algorithms, and simulated annealing. In this paper, we present a computationally efficient simulated annealing algorithm for maximum correlation core/periphery partitioning of binary networks. The algorithm is evaluated using simulated networks consisting of up to 2000 actors and spanning a variety of densities for the intra-core, intra-periphery, and inter-core-periphery components of the network. Core/periphery analyses of problem solving, trust, and information sharing networks for the frontline employees and managers of a consumer packaged goods manufacturer are provided to illustrate the use of the model.