Fluids (Jun 2023)
A Mock Circulation Loop to Characterize In Vitro Hemodynamics in Human Systemic Arteries with Stenosis
Abstract
Vascular disease is the leading cause of morbidity and mortality and a major cause of disability for Americans, and arterial stenosis is its most common form in systemic arteries. Hemodynamic characterization in a stenosed arterial system plays a crucial role in the diagnosis of its lesion severity and the decision-making process for revascularization, but it is not readily available in the current clinical measurements. The newly emerged image-based computational hemodynamics (ICHD) technique provides great potential to characterize the hemodynamics with fine temporospatial resolutions in realistic human vessels, but medical data is rather limited for validation requirements. We present an image-based experimental hemodynamics (IEHD) technique through a mock circulation loop (MCL) to bridge this critical gap. The MCL mimics blood circulation in human stenosed systemic arterial systems that can be either 3D-printed silicone, artificial, or cadaver arteries and thus enables in vitro measurement of hemodynamics. In this work, we focus on the development and validation of the MCL for the in vitro measurement of blood pressure in stenosed silicone arteries anatomically extracted from medical imaging data. Five renal and six iliac patient cases are studied. The pressure data from IEHD were compared with those from ICHD and medical measurement. The good agreements demonstrate the reliability of IEHD. We also conducted two parametric studies to demonstrate the medical applicability of IEHD. One was the cardiovascular response to MCL parameters. We found that blood pressure has a linear correlation with stroke volume and heart rate. Another was the effect of arterial stenosis, characterized by the volumetric reduction (VR) of the arterial lumen, on the trans-stenotic pressure gradient (TSPG). We parametrically varied the stenosis degree and measured the corresponding TSPG. The TSPG-VR curve provides a critical VR that can be used to assess the true hemodynamic severity of the stenosis. Meanwhile, the TSPG at VR = 0 can predict the potential pressure improvement after revascularization. Unlike the majority of existing MCLs that are mainly used to test medical devices involving heart function, this MCL is unique in its specific focus on pressure measurement in stenosed human systemic arteries. Meanwhile, rigorous hemodynamic characterization through concurrent IEHD and ICHD will significantly enhance our current understanding of the pathophysiology of stenosis and contribute to advancements in the medical treatment of arterial stenosis.
Keywords