BMC Ophthalmology (May 2017)

Long noncoding RNA expression profile in HLE B-3 cells during TGF-β2-induced epithelial-mesenchymal transition

  • Bingyu Zhang,
  • Yang Chen,
  • Meiyuan Qiu,
  • Zhixiang Ding

DOI
https://doi.org/10.1186/s12886-017-0461-z
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Recent evidence has shown that long noncoding RNAs (lncRNAs) are involved in the process of epithelial-mesenchymal transition (EMT). However, little research has focused on the expression profile of lncRNAs during EMT in human lens epithelial cells (LECs) and their functions have not yet been described. Methods Dysregulated lncRNAs and mRNAs in normal human lens epithelial B-3(HLE B-3) cells and during transforming growth factor β2(TGF-β2)-induced EMT were analyzed via lncRNA microarray. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analyses of differentially expressed mRNAs were performed to identify their functions and pathologic pathways. Six candidate lncRNAs were validated via quantitative real-time reverse transcription polymerase chain reaction(qRT-PCR) to confirm the microarray data. Results A total of 775 lncRNAs (325 up-regulated and 450 down-regulated) and 935 mRNAs (329 up-regulated and 606 down-regulated) were differentially expressed in HLE B-3 cells during TGF-β2-induced EMT compared to normal HLE B-3 cells. GO and KEGG Pathway analyses indicated the functions of differentially expressed mRNAs in the TGF-β2-induced EMT in HLE B-3 cells. qRT-PCR confirmed the trends indicated in microarray analysis for all 6 candidate lncRNAs. Conclusion Our study lays the foundation for future research in lncRNAs related to EMT in HLE B-3 cells and could provide new avenues for the prevention and treatment of posterior capsule opacification (PCO).

Keywords