The Plant Pathology Journal (Sep 2014)

Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859

  • Young-Hee Noh,
  • Sun-Young Kim,
  • Jong-Woo Han,
  • Young-Su Seo,
  • Jae-Soon Cha

DOI
https://doi.org/10.5423/PPJ.NT.12.2013.0122
Journal volume & issue
Vol. 30, no. 3
pp. 304 – 309

Abstract

Read online

The rpf genes and colSXOO1207/colRXOO1208 were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, colSXOO3534 (raxH)/colRXOO3535 (raxR) and colSXOO3762/colRXOO3763 were annotated. The colSXOO3534/colRXOO3535 were known to control AvrXa21 activity and functions of colSXOO3762/colRXOO3763 were unknown in Xoo. To characterize the relationship between rpf and colS/colR genes, expression of colS/colR genes in Rpf mutants of Xoo were analyzed with quantitative reverse transcription PCR (qRT-PCR). Expressions of all three colS/colR genes increased in the rpfF mutant in which DSF synthesis is defective. Expression of colSXOO1207/colRXOO1208, colSXOO3534/colRXOO3535 and colSXOO3762/colRXOO3763 increased 2, 2–7, 3–13 folds respectively. Expression of colSXOO3534 and colSXOO3762 also increased 2–4 folds in the rpfG mutant in which the signal from DSF is no longer transferred to down-stream. Expression of the other colS/colR genes was not significantly changed in the rpfG mutant compared to the wild type. Since RpfF and RpfG are responsible for DSF synthesis and signal transfer from DSF to down-stream to regulate virulence gene expression, these results suggest that the DSF and DSF-mediated signal regulate negatively three colS/colR genes in Xoo.

Keywords