IEEE Access (Jan 2021)

An Integrated Supplier-Buyer Lots Sampling Plan With Quality Traceability Based on Process Loss Restricted Consideration

  • Ming-Hung Shu,
  • To-Cheng Wang,
  • Bi-Min Hsu

DOI
https://doi.org/10.1109/ACCESS.2021.3095932
Journal volume & issue
Vol. 9
pp. 102687 – 102699

Abstract

Read online

Supplier-buyer relationships have been the focus of considerable supply chain management and marketing research for decades. To validate the process capability of a supplier, practitioners usually operate the acceptance sampling plan (ASP). The most basic ASP is a single sampling plan (SSP) due to its straightforward lot-disposition mechanism. However, since the lot-disposition mechanism of SSP cannot accommodate the historical lot-quality levels information, it requires a large sample size for inspection to validate the submitted lot’s process capability. To obtain these benefits from historical information, multiple-lot dependent state (MDS) sampling plans have been proposed. The MDS plans have manufacturing traceability of historical lot-quality levels information to sentence the submitted lot. However, the MDS plan’s manufacturing traceability has a drawback that cost-efficiency decreases as more historical lot-quality levels information are considered, which contradicts its initial development goal. To overturn this contradictory situation, we proposed the adaptive MDS (AMDS) plans based on the process loss restricted consideration with combinatorial mathematical treatment that can correct the MDS plans manufacturing traceability of historical lot-quality levels information that help practitioners to adopt more historical information into lot-disposition freely without bearing the reduction of cost-efficiency. Meanwhile, their performances are superior to existing MDS plans in terms of cost-effectiveness and discriminatory power. Moreover, we further developed a web-based app for our proposed plans to improve the convenience of applying them in practice. By operating the web-based app, practitioners can quickly obtain the optimal plan criteria without bearing the burdens of table-checking or mathematical model solving. These improvements can genuinely help buyers distinguish reliable suppliers efficiently and build up a strong partnership with them. Finally, the applicability of the proposed plan is demonstrated in a real-world case study.

Keywords