Nature Communications (Feb 2022)

Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings

  • Shufeng Kong,
  • Francesco Ricci,
  • Dan Guevarra,
  • Jeffrey B. Neaton,
  • Carla P. Gomes,
  • John M. Gregoire

DOI
https://doi.org/10.1038/s41467-022-28543-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Electrons and phonons give rise to important properties of materials. The machine learning framework Mat2Spec vastly accelerates their computational characterization, enabling discovery of materials for thermoelectrics and solar energy technologies.