Scientific Reports (Jul 2023)

A novel perspective for M-polynomials to compute molecular descriptors of borophene nanosheet

  • Rashad Ismail,
  • Annmaria Baby,
  • D. Antony Xavier,
  • Eddith Sarah Varghese,
  • Muhammad Usman Ghani,
  • A. Theertha Nair,
  • Hanen Karamti

DOI
https://doi.org/10.1038/s41598-023-37637-5
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Nanomaterials feature exceptional, one-of-a-kind qualities that might be used in electronics, medicine, and other industries. Two-dimensional nanomaterials called borophene have a variety of intriguing characteristics, which helped them to leave an indelible impression in the fields of chemistry, material science, nanotechnology, and condensed matter physics. The concept of modelling the structure of a molecule or chemical network to a chemical graph and then quantitatively analysing them with the aid of topological descriptors was a major advance in the fields of mathematics and chemistry, with a wide range of applications. M-polynomial approach is a very versatile and quick method for computing the degree-based descriptors of chemical graphs or networks. The degree-based descriptors of the $$\beta _{12}$$ β 12 -Borophene nanosheet are established in this study utilising the M-polynomial technique. A program code that enables to generate the M-polynomial of any chemical structure was developed in Java platform and the same is displayed. At the conclusion, the numerical and graphical comparison based on the identified analytic expressions is also provided. Additionally, the QSPR analysis was also carried out and the outcoms are presented therein.