Boletim da Sociedade Paranaense de Matemática (Dec 2022)
Amenable quase-lattice ordered groups and true representations
Abstract
Let (G, P) be a quasi-lattice ordered group. In [2] we constructed a universal covariant representation (A,U) for (G, P) in a way that avoids some of the intricacies of the other approaches in [11] and [8]. Then we showed if (G, P) is amenable, true representations of (G, P) generate C∗-algebras which are canonically isomorphic to the C∗-algebra generated by the universal covariant representation. In this paper, we discuss characterizations of amenability in a comparatively simple and natural way to introduce this formidable property. Amenability of (G, P) can be established by investigating the behavior of ΦU on the range of a positive, faithful, linear map rather than the whole algebra.