PLoS ONE (Jan 2016)

De Novo Assembly and Characterization of Early Embryonic Transcriptome of the Horseshoe Crab Tachypleus tridentatus.

  • Mingliang Chen,
  • Chenying Wang,
  • Wei Wang,
  • Gubiao Ji,
  • Bin Hu,
  • Mi Du,
  • Guosheng Liu,
  • Zengpeng Li,
  • Weiyi Wang,
  • Xiangzhi Lin,
  • Weibing Zheng,
  • Jianming Chen

DOI
https://doi.org/10.1371/journal.pone.0145825
Journal volume & issue
Vol. 11, no. 1
p. e0145825

Abstract

Read online

The horseshoe crab Tachypleus tridentatus is a unique marine species and a potential model for marine invertebrate. Limited genomic and transcriptional data are currently available to understand the molecular mechanisms underlying the embryonic development of T. tridentatus. Here, we reported for the first time the de novo transcriptome assembly for T. tridentatus at embryonic developmental stage using Illumina RNA-seq platform. Approximate 38 million reads were obtained and further assembled into 133,212 unigenes. Sequence homology analysis against public databases revealed that 33,796 unigenes could be annotated with gene descriptions. Of the annotated unigenes, we identified a number of key components of several conserved metazoan signaling pathways (Hedgehog, Wnt, TGF-beta and Notch pathways) and other important regulatory genes involved in embryonic development. Targeted searching of Pax family genes which play critical roles in the formation of tissue and organ during embryonic development identified a complete set of Pax family genes. Moreover, the full length T. tridentatus Pax1/9a (TtPax1/9a) and Pax1/9b (TtPax1/9b) cDNA sequences were determined based on the transcriptome, demonstrating the immediate application of our database. Using quantitative real time PCR, we analyzed the expression patterns of TtPax1/9a and TtPax1/9b in different tissues of horseshoe crab. Taking advantage of Drosophila model, we further found that TtPax1/9b, but not TtPax1/9a, can partly rescue the Drosophila homolog Poxm dysfunction-caused lethality at the larval stage. Our study provides the embryonic transcriptome of T. tridentatus which could be immediately used for gene discovery and characterization, functional genomics studies in T. tridentatus. This transcriptome database will also facilitate the investigations of molecular mechanisms underlying embryonic development of T. tridentatus and other marine arthropods as well.