Regenerative Therapy (Jun 2022)

Hyaluronic acid hydrogels crosslinked via blue light-induced thiol-ene reaction for the treatment of rat corneal alkali burn

  • Sun Kyoung Park,
  • Minji Ha,
  • Eun Jeong Kim,
  • Youngyoon Amy Seo,
  • Hyun Jong Lee,
  • David Myung,
  • Hyun-Seung Kim,
  • Kyung-Sun Na

Journal volume & issue
Vol. 20
pp. 51 – 60

Abstract

Read online

To assess corneal inflammation from alkali chemical burns, we examined the therapeutic effects of in situ-forming hyaluronic acid (HA) hydrogels crosslinked via blue light-induced thiol-ene reaction on a rat corneal alkali burn model. Animals were divided into three groups (n = 7 rats per group): untreated, treated with 0.1% HA eye drops, and treated with crosslinked HA hydrogels. Crosslinking of HA hydrogel followed by the administration of HA eye drops and crosslinked HA hydrogels were carried out once a day from days 0–4. Corneal re-epithelialization, opacity, neovascularization, thickness, and histology were evaluated to compare the therapeutic effects of the three groups. Further investigation was conducted on the transparency of HA hydrogels to acquire the practical capabilities of hydrogel as a reservoir for drug delivery. Compared to untreated animals, animals treated with crosslinked HA hydrogels exhibited greater corneal re-epithelialization on days 1, 2, 4, and 7 post-injury (p = 0.004, p = 0.007, p = 0.008, and p = 0.034, respectively) and the least corneal neovascularization (p = 0.008). Histological analysis revealed lower infiltration of stromal inflammatory cells and compact collagen structure in crosslinked HA hydrogel-treated animals than in untreated animals. These findings corresponded with immunohistochemical analyses indicating that the expression of inflammatory markers such as α-SMA, MMP9, and IL1-β was lower in animals treated with crosslinked HA hydrogels than untreated animals and animals treated only with 0.1% HA eye drops. With beneficial pharmacological effects such as re-epithelization and anti-inflammation, in situ-forming hyaluronic acid (HA) hydrogels may be a promising approach to effective drug delivery in cases of corneal burn injuries.

Keywords