PLoS ONE (Jan 2017)

Levels of L-malate and other low molecular weight metabolites in spores of Bacillus species and Clostridium difficile.

  • George Korza,
  • Stephen Abini-Agbomson,
  • Barbara Setlow,
  • Aimee Shen,
  • Peter Setlow

DOI
https://doi.org/10.1371/journal.pone.0182656
Journal volume & issue
Vol. 12, no. 8
p. e0182656

Abstract

Read online

Dormant spores of Bacillus species lack ATP and NADH and contain notable levels of only a few other common low mol wt energy reserves, including 3-phosphoglyceric acid (3PGA), and glutamic acid. Recently, Bacillus subtilis spores were reported to contain ~ 30 μmol of L-malate/g dry wt, which also could serve as an energy reserve. In present work, L-malate levels were determined in the core of dormant spores of B. subtilis, Bacillus cereus, Bacillus megaterium and Clostridium difficile, using both an enzymatic assay and 13C-NMR on extracts prepared by several different methods. These assays found that levels of L-malate in B. cereus and B. megaterium spores were ≤ 0.5 μmol/g dry wt, and ≤ 1 μmol/g dry wt in B. subtilis spores, and levels of L-lactate and pyruvate in B. megaterium and B. subtilis spores were 3 μmol/g dry spores are: i) dipicolinic acid, carbonate/bicarbonate and 3PGA in B. megaterium, B. subtilis and C. difficile; ii) glutamate in B. megaterium and B. subtilis; iii) arginine in B. subtilis; and iv) at least one unidentified compound in all three species.