Green Energy and Intelligent Transportation (Apr 2023)

Progress and challenges in multi-stack fuel cell system for high power applications: Architecture and energy management

  • Yuqi Qiu,
  • Tao Zeng,
  • Caizhi Zhang,
  • Gucheng Wang,
  • Yaxiong Wang,
  • Zhiguang Hu,
  • Meng Yan,
  • Zhongbao Wei

Journal volume & issue
Vol. 2, no. 2
p. 100068

Abstract

Read online

ABSTRACT: With the development of fuel cells, multi-stack fuel cell system (MFCS) for high power application has shown tremendous development potential owing to their obvious advantages including high efficiency, durability, reliability, and pollution-free. Accordingly, the state-of-the-art of MFCS is summarized and analyzed to advance its research. Firstly, the MFCS applications are presented in high-power scenarios, especially in transportation applications. Then, to further investigate the MFCS, MFCS including hydrogen and air subsystem, thermal and water subsystem, multi-stack architecture, and prognostics and health monitoring are reviewed. It is noted that prognostics and health monitoring are investigated rarely in MFCS compared with previous research. In addition, the efficiency and durability of MFCS are not only related to the application field and design principle but also the energy management strategy (EMS). The reason is that the EMS is crucial for lifespan, cost, and efficiency in the multi-stack fuel cell system. Finally, the challenge and development potential of MFCS is proposed to provide insights and guidelines for future research.

Keywords