Frontiers in Immunology (Aug 2023)

Natural killer cells and BNT162b2 mRNA vaccine reactogenicity and durability

  • Elizabeth K. Graydon,
  • Elizabeth K. Graydon,
  • Tonia L. Conner,
  • Kim Dunham,
  • Cara Olsen,
  • Emilie Goguet,
  • Emilie Goguet,
  • Si’Ana A. Coggins,
  • Si’Ana A. Coggins,
  • Marana Rekedal,
  • Marana Rekedal,
  • Emily Samuels,
  • Emily Samuels,
  • Belinda Jackson-Thompson,
  • Belinda Jackson-Thompson,
  • Matthew Moser,
  • Matthew Moser,
  • Alyssa Lindrose,
  • Alyssa Lindrose,
  • Monique Hollis-Perry,
  • Gregory Wang,
  • Gregory Wang,
  • Santina Maiolatesi,
  • Santina Maiolatesi,
  • Yolanda Alcorta,
  • Yolanda Alcorta,
  • Anatalio Reyes,
  • Anatalio Reyes,
  • Mimi Wong,
  • Mimi Wong,
  • Kathy Ramsey,
  • Kathy Ramsey,
  • Julian Davies,
  • Julian Davies,
  • Edward Parmelee,
  • Edward Parmelee,
  • Orlando Ortega,
  • Orlando Ortega,
  • Mimi Sanchez,
  • Mimi Sanchez,
  • Sydney Moller,
  • Jon Inglefield,
  • David Tribble,
  • Timothy Burgess,
  • Robert O’Connell,
  • Allison M. W. Malloy,
  • Simon Pollett,
  • Simon Pollett,
  • Christopher C. Broder,
  • Eric D. Laing,
  • Stephen K. Anderson,
  • Edward Mitre

DOI
https://doi.org/10.3389/fimmu.2023.1225025
Journal volume & issue
Vol. 14

Abstract

Read online

IntroductionNatural killer (NK) cells can both amplify and regulate immune responses to vaccination. Studies in humans and animals have observed NK cell activation within days after mRNA vaccination. In this study, we sought to determine if baseline NK cell frequencies, phenotype, or function correlate with antibody responses or inflammatory side effects induced by the Pfizer-BioNTech COVID-19 vaccine (BNT162b2).MethodsWe analyzed serum and peripheral blood mononuclear cells (PBMCs) from 188 participants in the Prospective Assessment of SARS-CoV-2 Seroconversion study, an observational study evaluating immune responses in healthcare workers. Baseline serum samples and PBMCs were collected from all participants prior to any SARS-CoV-2 infection or vaccination. Spike-specific IgG antibodies were quantified at one and six months post-vaccination by microsphere-based multiplex immunoassay. NK cell frequencies and phenotypes were assessed on pre-vaccination PBMCs from all participants by multi-color flow cytometry, and on a subset of participants at time points after the 1st and 2nd doses of BNT162b2. Inflammatory side effects were assessed by structured symptom questionnaires, and baseline NK cell functionality was quantified by an in vitro killing assay on participants that reported high or low post-vaccination symptom scores.ResultsKey observations include: 1) circulating NK cells exhibit evidence of activation in the week following vaccination, 2) individuals with high symptom scores after 1st vaccination had higher pre-vaccination NK cytotoxicity indices, 3) high pre-vaccination NK cell numbers were associated with lower spike-specific IgG levels six months after two BNT162b2 doses, and 4) expression of the inhibitory marker NKG2A on immature NK cells was associated with higher antibody responses 1 and 6 months post-vaccination.DiscussionThese results suggest that NK cell activation by BNT162b2 vaccination may contribute to vaccine-induced inflammatory symptoms and reduce durability of vaccine-induced antibody responses.

Keywords