Case Studies in Thermal Engineering (Sep 2019)
Evaluating improvements in a waste-to-energy combined heat and power plant
Abstract
Evaluation of different alternatives for enhancement in a waste combustion process enables adequate decisions to be made for improving its efficiency. Exergy analysis has been shown be an effective tool in assessing the overall efficiency of a system. However, the conventional exergy method does not provide information of the improvements possible in a real process. The purpose of this paper is to evaluate state-of-the art techniques applied in a municipal solid-waste fired heat and power plant. The base case plant is evaluated first; the results are then used to decide upon which technical modifications should be introduced and they are thereafter evaluated. A modified exergy-based method is used to discover the improvement potential of both the individual components and the overall base case plant. The results indicate that 64% of exergy destruction in the overall process can theoretically be improved. The various modifications selected involve changing the bed material, using a gasifier followed by a gas boiler and incorporating a more durable material into the boiler walls. In addition, changing the heating medium of the incoming air (from steam to flue gas) along with a reduction in the stack temperature and the integration of flue gas condensation were considered for utilizing the exergy in the flue gases. The modification involving gasifier, gas boiler and flue gas condensation proved to be the best option, with the highest exergy efficiency increment of 21%. Keywords: Theoretical process, Exergy efficiency, Flue gas condensation, Municipal solid-waste fired plant, Improvement potential, Gasification-combustion process