Heliyon (Jun 2023)

Cavin-2 loss exacerbates hypoxia-induced pulmonary hypertension with excessive eNOS phosphorylation and protein nitration

  • Takeru Kasahara,
  • Takehiro Ogata,
  • Naohiko Nakanishi,
  • Shinya Tomita,
  • Yusuke Higuchi,
  • Naoki Maruyama,
  • Tetsuro Hamaoka,
  • Satoaki Matoba

Journal volume & issue
Vol. 9, no. 6
p. e17193

Abstract

Read online

Pulmonary hypertension (PH) is associated with a poor prognosis even in recent years. Caveolin-1 (CAV1), a caveolae-associated protein, is a causal gene in PH. Cavin-2, one of the other caveolae-associated proteins, forms protein complexes with CAV1 and influences each other's functions. However, the role of Cavin-2 in PH has not been thoroughly investigated. To clarify the role of Cavin-2 in PH, we exposed Cavin-2-deficient (Cavin-2 KO) mice to hypoxia. A part of the analyses was confirmed in human pulmonary endothelial cells (HPAECs). After 4-week 10% O2 hypoxic exposure, we performed physiological, histological, and immunoblotting analyses. Right ventricular (RV) systolic pressure elevation and RV hypertrophy were exacerbated in Cavin-2 KO mice with hypoxia-induced PH (Cavin-2 KO PH mice). The vascular wall thickness of pulmonary arterioles was aggravated in Cavin-2 KO PH mice. Cavin-2 loss reduced CAV1 and induced sustained endothelial nitric oxide synthase (eNOS) hyperphosphorylation in the Cavin-2 KO PH lungs and HPAECs. NOx production associated with eNOS phosphorylation was also increased in the Cavin-2 KO PH lung and HPAECs. Furthermore, the nitration of proteins, including protein kinase G (PKG), was raised in the Cavin-2 KO PH lungs. In conclusion, we revealed that Cavin-2 loss exacerbated hypoxia-induced PH. Our results suggest that Cavin-2 loss leads to sustained eNOS hyperphosphorylation in pulmonary artery endothelial cells via CAV1 reduction, resulting in Nox overproduction-mediated nitration of proteins, including PKG, in smooth muscle cells.

Keywords