Sensors (May 2009)

Micro-Pattern Guided Adhesion of Osteoblasts on Diamond Surfaces

  • Marie Kalbacova,
  • Egor Ukraintsev,
  • Alexander Kromka,
  • Lenka Michalíková,
  • Bohuslav Rezek

DOI
https://doi.org/10.3390/s90503549
Journal volume & issue
Vol. 9, no. 5
pp. 3549 – 3562

Abstract

Read online

Microscopic chemical patterning of diamond surfaces by hydrogen and oxygen surface atoms is used for self-assembly of human osteoblastic cells into micro-arrays. The cell adhesion and assembly is further controlled by concentration of cells (2,500-10,000 cells/cm2)and fetal bovine serum (0-15%). The cells are characterized by fluorescence microscopy of actin fibers and nuclei. The serum protein adsorption is studied by atomic force microscopy (AFM). The cells are arranged selectively on O-terminated patterns into 30-200 μm wide arrays. Higher cell concentrations allow colonization of unfavorable H-terminated regions due to mutual cell communication. There is no cell selectivity without the proteins in the medium. Based on the AFM, the proteins are present on both H- and O-terminated surfaces. Pronounced differences in their thickness, surface roughness, morphology, and phase imagesindicate different conformation of the proteins and explain the cell selectivity.

Keywords