Oil & Gas Science and Technology (Sep 2014)
Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for Targeted Degradation Compounds of Ethanolamine Used in CO2 Capture: Application to Real Samples
Abstract
In the field of greenhouse gas emission, a promising approach consists in CO2 storage and capture. However most of the processes are based on amine solutions which are likely to degrade and produce potentially harmful compounds. So there is a need for analytical methods to identify and quantify these products. Monoethanolamine was used as a model compound for the amines used for CO2 capture. A liquid chromatography tandem mass spectrometry method was developed and validated for the quantification of six products of degradation of monoethanolamine (Glycine, N-(2-hydroxyethyl)glycine, N-glycylglycine, bicine, N,N′-bis-(2-hydroxyethyl) urea (BHE Urea), and diethanolamine) that were systematically detected with a LC-MS Scan method in real samples from CO2 capture and storage processes. The main difficulty of this study and its originality ly in the strategy developed to overcome the complexity of the matrix which is a mix of water and amine (70/30): the combined use of deuterated internal standards and a recent chemiometric approach to validate the method, i.e. the accuracy profile. For five compounds it was possible to validate the method with acceptance limits of 20%. This method was then successfully applied to real samples from pilot plant and lab-scale experiments.