Heliyon (Aug 2024)

Insight into structural dynamics involved in activation mechanism of full length KRAS wild type and P-loop mutants

  • Vinod Jani,
  • Uddhavesh Sonavane,
  • Rajendra Joshi

Journal volume & issue
Vol. 10, no. 16
p. e36161

Abstract

Read online

KRAS protein is known to be frequently mutated in various cancers. The most common mutations being at position 12, 13 and 61. The positions 12 and 13 form part of the phosphate binding region (P-loop) of KRAS. Owing to mutation, the protein remains in continuous active state and affects the normal cellular process. Understanding the structural changes owing to mutations in GDP-bound (inactive state) and GTP-bound (active state) may help in the design of better therapeutics. To understand the structural flexibility due to the mutations specifically located at P-loop regions (G12D, G12V and G13D), extensive molecular dynamics simulations (24 μs) have been carried for both inactive (GDP-bound) and active (GTP-bound) structures for the wild type and these mutants. The study revealed that the local structural changes at the site of mutations allosterically guide changes in distant regions of the protein through hydrogen bond and hydrophobic signalling network. The dynamic cross correlation analysis and the comparison of the correlated motions among different systems manifested that changes in SW-I, SW-II, α3 and the loop preceding α3 affects the interactions of GDP/GTP with different regions of the protein thereby affecting its hydrolysis. Further, the Markov state modelling analysis confirmed that the mutations, especially G13D imparts rigidity to structure compared to wild type and thus limiting its conformational state in either intermediate state or active state. The study suggests that along with SW-I and SW-II regions, the loop region preceding the α3 helix and α3 helix are also involved in affecting the hydrolysis of nucleotides and may be considered while designing therapeutics against KRAS.

Keywords