European Radiology Experimental (Jan 2020)

Bone microarchitectural analysis using ultra-high-resolution CT in tiger vertebra and human tibia

  • Ryota Inai,
  • Ryuichi Nakahara,
  • Yusuke Morimitsu,
  • Noriaki Akagi,
  • Youhei Marukawa,
  • Toshi Matsushita,
  • Takashi Tanaka,
  • Akihiro Tada,
  • Takao Hiraki,
  • Yoshihisa Nasu,
  • Keiichiro Nishida,
  • Toshifumi Ozaki,
  • Susumu Kanazawa

DOI
https://doi.org/10.1186/s41747-019-0135-0
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background To reveal trends in bone microarchitectural parameters with increasing spatial resolution on ultra-high-resolution computed tomography (UHRCT) in vivo and to compare its performance with that of conventional-resolution CT (CRCT) and micro-CT ex vivo. Methods We retrospectively assessed 5 tiger vertebrae ex vivo and 16 human tibiae in vivo. Seven-pattern and four-pattern resolution imaging were performed on tiger vertebra using CRCT, UHRCT, and micro-CT, and on human tibiae using UHRCT. We measured six microarchitectural parameters: volumetric bone mineral density (vBMD), trabecular bone volume fraction (bone volume/total volume, BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and connectivity density (ConnD). Comparisons between different imaging resolutions were performed using Tukey or Dunnett T3 test. Results The vBMD, BV/TV, Tb.N, and ConnD parameters showed an increasing trend, while Tb.Sp showed a decreasing trend both ex vivo and in vivo. Ex vivo, UHRCT at the two highest resolutions (1024- and 2048-matrix imaging with 0.25-mm slice thickness) and CRCT showed significant differences (p ≤ 0.047) in vBMD (51.4 mg/cm3 and 63.5 mg/cm3 versus 20.8 mg/cm3), BV/TV (26.5% and 29.5% versus 13.8 %), Tb.N (1.3 l/mm and 1.48 l/mm versus 0.47 l/mm), and ConnD (0.52 l/mm3 and 0.74 l/mm3 versus 0.02 l/mm3, respectively). In vivo, the 512- and 1024-matrix imaging with 0.25-mm slice thickness showed significant differences in Tb.N (0.38 l/mm versus 0.67 l/mm, respectively) and ConnD (0.06 l/mm3 versus 0.22 l/mm3, respectively). Conclusions We observed characteristic trends in microarchitectural parameters and demonstrated the potential utility of applying UHRCT for microarchitectural analysis.

Keywords