Atmospheric Chemistry and Physics (Aug 2011)

Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol

  • B. Gantt,
  • N. Meskhidze,
  • M. C. Facchini,
  • M. Rinaldi,
  • D. Ceburnis,
  • C. D. O'Dowd

DOI
https://doi.org/10.5194/acp-11-8777-2011
Journal volume & issue
Vol. 11, no. 16
pp. 8777 – 8790

Abstract

Read online

For oceans to be a significant source of primary organic aerosol (POA), sea spray aerosol (SSA) must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OM<sub>SSA</sub>). To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-<i>a</i>, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-<i>a</i> concentration ([Chl-<i>a</i>]) are the most consistent predictors of OM<sub>SSA</sub>. This relationship, combined with the published aerosol size dependence of OM<sub>SSA</sub>, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-<i>a</i>], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr<sup>−1</sup>. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere.