Infrastructures (Dec 2021)

Effects of Axial Relative Ground Movement on Small Diameter Polyethylene Piping in Loose Sand

  • Auchib Reza,
  • Ashutosh Sutra Dhar

DOI
https://doi.org/10.3390/infrastructures6120168
Journal volume & issue
Vol. 6, no. 12
p. 168

Abstract

Read online

Small diameter (42 mm) medium density polyethylene (MDPE) pipes are widely used in the gas distribution system in Canada and other countries. They are sometimes exposed to ground movements resulting from landslides or earthquakes. The current design guidelines for evaluating the pipes subjected to ground movement were developed for steel pipes of larger diameters and may not apply to flexible MDPE pipes. This paper evaluates 42 mm diameter MDPE pipes buried in loose sand under axial relative ground movement for developing a design method for the pipes. MDPE is a viscoelastic material; therefore, the behaviour of MDPE pipes exposed to landslides would depend on the rate of ground movements. In this research, full-scale laboratory tests were conducted to investigate the responses of buried pipes under various rates of relative axial displacement. Finite element modelling of the tests was used to interpret the observed behaviour using the continuum mechanics framework. The study revealed that the pulling force on the pipe depends on the rate of relative ground displacement (pulling rate). The nondimensional pulling force possessed a nonlinear relationship with the pulling rate. A rate-dependent interface friction angle could be used to calculate the maximum pulling forces using the conventional design guidelines for the pipes in loose sand. Based on the pulling force, the pipe wall strains can be estimated using the methods available for larger diameter pipes.

Keywords