Brazilian Journal of Pharmaceutical Sciences (Dec 2009)
Estimating the turnover number in enzyme kinetic reactions using transient and stationary state data
Abstract
Substrate and product concentration data obtained by simulating enzyme-substrate reaction rate equations were used to test two proposed kinetic rate constant estimation techniques in this study. In the first technique, the turnover number, k3, was calculated using early transient time domain data, which are difficult to obtain experimentally. The technique used an iterative approach to calculate k3 with a pair of data and the value of k3 could be retrieved with 35% error. The second technique calculated k3 using stationary domain data and the value of k3 could be retrieved with less than 5% error. This second technique also offered internal consistency in the calculation of k3 by calculating k3 both from the intercept and the slope of the linear plot derived in this study. A series of sensitivity analyses was conducted to understand the robustness of the second technique in estimating k3 from simulated data to the changes in the reaction rate constants (k1, k2, and k3) and the initial concentration of enzyme used for simulation. It was found that the second technique generally worked well in the estimation of k3 except for the simulated data for fast substrate conversions such as in the large k3 and [E]0 cases . This latter method, thus, shows promise for the use of late time experimental substrate/product concentration data to obtain k3. Exclusively using late time data avoids the need for difficult and expensive rapid early time measurement techniques for estimating k3. Once a reasonable estimate for k3 is obtained, the initial enzyme value can easily be determined from the maximum velocity constant established from fitting the Michaelis-Menten or Briggs-Haldane equations to substrate and product stationary state domain (late time) data. While the first technique can estimate k3 with only one point in the transient domain, it is suggested that the second method generally be favored since it only requires late-time stationary domain data and appears to be more accurate.Dados de concentração de substrato e de produto obtidos por simulação de equações de velocidade de reação enzima-substrato foram usados neste estudo para testar duas técnicas para estimar constantes cinéticas. Na primeira técnica, a constante, k3, foi calculada utilizando os dados de domínio do tempo inicial de transição, que são difíceis de serem obtidos experimentalmente. A técnica usou uma aproximação iterativa para calcular k3 cujo valor pôde ser estimado com erro de 33%. A segunda técnica calculou k3 usando dados de domínio no estado estacionário e o valor de k3 pôde ser estimado com erro de 5%. Esta segunda técnica também ofereceu uma consistência interna no cálculo de k3, por calculá-lo tanto pela intersecção quanto pela inclinação da reta derivada deste estudo. Uma série de análises de sensibilidade foi realizada para avaliar a robustez da segunda técnica na estimativa de k3 utilizando dados que foram simulados quanto às mudanças nas constantes de taxa de reação (k1, k2 e k3) e na concentração inicial de enzima. Foi encontrado que a segunda técnica, em geral, proporcionou boa estimativa de k3, exceto para os dados simulados para as conversões rápidas de substrato, como no caso de valores elevados de k3 e de [E]o. Este último método, portanto, mostra ser promissor quando se usam dados experimentais tardios da concentração de substrato/produto para obter k3. O uso dados de tempo tardio evita a necessidade do uso de técnicas difíceis e caras na medida de tempo iniciais para estimativa de k3. Uma vez que é obtida uma estimativa razoável de k3, o valor inicial da enzima pode ser facilmente determinado a partir da constante de velocidade máxima estabelecida por ajuste das equações de Michaelis-Menten ou de Briggs-Haldane e partir de dados de substrato e de produtos no estado estacionário (tempo tardio). Enquanto a primeira técnica pode estimar k3 com somente um ponto no regime transiente, sugere-se que o segundo método seja melhor uma vez que ele requer apenas dados do estado estacionário tardio e parece ser mais preciso.
Keywords