npj Flexible Electronics (May 2022)

Wearable EEG electronics for a Brain–AI Closed-Loop System to enhance autonomous machine decision-making

  • Joo Hwan Shin,
  • Junmo Kwon,
  • Jong Uk Kim,
  • Hyewon Ryu,
  • Jehyung Ok,
  • S. Joon Kwon,
  • Hyunjin Park,
  • Tae-il Kim

DOI
https://doi.org/10.1038/s41528-022-00164-w
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Human nonverbal communication tools are very ambiguous and difficult to transfer to machines or artificial intelligence (AI). If the AI understands the mental state behind a user’s decision, it can learn more appropriate decisions even in unclear situations. We introduce the Brain–AI Closed-Loop System (BACLoS), a wireless interaction platform that enables human brain wave analysis and transfers results to AI to verify and enhance AI decision-making. We developed a wireless earbud-like electroencephalography (EEG) measurement device, combined with tattoo-like electrodes and connectors, which enables continuous recording of high-quality EEG signals, especially the error-related potential (ErrP). The sensor measures the ErrP signals, which reflects the human cognitive consequences of an unpredicted machine response. The AI corrects or reinforces decisions depending on the presence or absence of the ErrP signals, which is determined by deep learning classification of the received EEG data. We demonstrate the BACLoS for AI-based machines, including autonomous driving vehicles, maze solvers, and assistant interfaces.