Systems (Nov 2023)

Enhancing Smart IoT Malware Detection: A GhostNet-based Hybrid Approach

  • Abdulwahab Ali Almazroi,
  • Nasir Ayub

DOI
https://doi.org/10.3390/systems11110547
Journal volume & issue
Vol. 11, no. 11
p. 547

Abstract

Read online

The Internet of Things (IoT) constitutes the foundation of a deeply interconnected society in which objects communicate through the Internet. This innovation, coupled with 5G and artificial intelligence (AI), finds application in diverse sectors like smart cities and advanced manufacturing. With increasing IoT adoption comes heightened vulnerabilities, prompting research into identifying IoT malware. While existing models excel at spotting known malicious code, detecting new and modified malware presents challenges. This paper presents a novel six-step framework. It begins with eight malware attack datasets as input, followed by insights from Exploratory Data Analysis (EDA). Feature engineering includes scaling, One-Hot Encoding, target variable analysis, feature importance using MDI and XGBoost, and clustering with K-Means and PCA. Our GhostNet ensemble, combined with the Gated Recurrent Unit Ensembler (GNGRUE), is trained on these datasets and fine-tuned using the Jaya Algorithm (JA) to identify and categorize malware. The tuned GNGRUE-JA is tested on malware datasets. A comprehensive comparison with existing models encompasses performance, evaluation criteria, time complexity, and statistical analysis. Our proposed model demonstrates superior performance through extensive simulations, outperforming existing methods by around 15% across metrics like AUC, accuracy, recall, and hamming loss, with a 10% reduction in time complexity. These results emphasize the significance of our study’s outcomes, particularly in achieving cost-effective solutions for detecting eight malware strains.

Keywords