Nature Communications (Oct 2020)

Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk

  • Weiva Sieh,
  • Joseph H. Rothstein,
  • Robert J. Klein,
  • Stacey E. Alexeeff,
  • Lori C. Sakoda,
  • Eric Jorgenson,
  • Russell B. McBride,
  • Rebecca E. Graff,
  • Valerie McGuire,
  • Ninah Achacoso,
  • Luana Acton,
  • Rhea Y. Liang,
  • Jafi A. Lipson,
  • Daniel L. Rubin,
  • Martin J. Yaffe,
  • Douglas F. Easton,
  • Catherine Schaefer,
  • Neil Risch,
  • Alice S. Whittemore,
  • Laurel A. Habel

DOI
https://doi.org/10.1038/s41467-020-18883-x
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Mammographic density represents one the strongest predictors of breast cancer risk. Here the authors perform genome-wide association study meta-analysis of women screened with full-field digital mammography and identify 31 previously unreported loci associated with mammographic density phenotypes.