International Journal of Aerospace Engineering (Jan 2022)

A Cycle Slip Detection and Repair Method Using BDS Triple-Frequency Optimization Combination with Wavelet Denoising

  • Kezhao Li,
  • Haofei Ban,
  • Yingxiang Jiao,
  • Shuaikang Lv

DOI
https://doi.org/10.1155/2022/5110875
Journal volume & issue
Vol. 2022

Abstract

Read online

The traditional triple-frequency geometry-free pseudorange minus phase (GFPMP) method is very susceptible to the influence of pseudorange observation noise, and it is difficult to detect insensitive small cycle slips. The dual-frequency phase ionospheric residual (PIR) method has the ability to detect sensitive small cycle slips, but its detection results have multivalue problems. In view of this, a GFPMP-PIR combination model method with wavelet denoising (GPW) is proposed here. The idea of this method is as follows: firstly, wavelet transform is used to denoise the pseudorange observations; then, by optimizing and selecting the combination coefficients with the minimum condition, an optimized GFPMP-PIR combination model is constructed. Hence, the source data quality is assured through wavelet denoising. And the accuracy of cycle slip detection and repair is improved by using the dual-frequency PIR combination. Moreover, the multivalue problem of the dual-frequency PIR method is solved by triple-frequency GFPMP combination; finally, the BeiDou navigation satellite system (BDS) triple-frequency measurement data is used for experimental verification. The experiment results show that the GFPMP-PIR optimization combination model with wavelet denoising can detect and repair various cycle slips, especially for insensitive small cycle slips.