Foods (Feb 2023)
Investigation of Consequences of High-Voltage Pulsed Electric Field and TGase Cross-Linking on the Physicochemical and Rheological Properties of <i>Pleurotus eryngii</i> Protein
Abstract
This study aimed to evaluate the effects of high-voltage pulsed electric fields (HPEF) and transglutaminase (TGase) cross-clinking on the physicochemical and rheological properties of Pleurotus eryngii protein (PEP). The results showed that HPEF increased α-helixes and β-turns but decreased β-folds. A HPEF at 1500 V/cm maximized the free sulfhydryl content and solubility of PEP. TGase formed high-molecular-weight polymers in PEP. TGase at 0.25% maximized the free sulfhydryl groups, particle size, and solubility; shifted the maximum absorption wavelength from 343 nm to 339 nm and 341 nm; increased α-helixes and β-turns and decreased β-folds; and showed better rheological properties. Compared with TGase cross-linking, HPEF-1500 V/cm and 1% TGase significantly reduced the free sulfhydryl groups, particle size, and solubility, produced more uniform network structures, and improved the rheological properties. These results suggest that HPEF can increase the cross-linking of TGase and improve rheological properties of TGase-cross-linked PEP by affecting the physicochemical properties.
Keywords