Symmetry (Dec 2020)
On the Difference of Inverse Coefficients of Univalent Functions
Abstract
Let f be analytic in the unit disk D={z∈C:|z|1}, and S be the subclass of normalized univalent functions with f(0)=0, and f′(0)=1. Let F be the inverse function of f, given by F(z)=ω+∑n=2∞Anωn for some |ω|≤r0(f). Let S*⊂S be the subset of starlike functions in D, and C the subset of convex functions in D. We show that −1≤|A3|−|A2|≤3 for f∈S, the upper bound being sharp, and sharp upper and lower bounds for |A3|−|A2| for the more important subclasses of S* and C, and for some related classes of Bazilevič functions.
Keywords