Pharmaceuticals (Feb 2023)

Renin–Angiotensin System Antagonism Protects the Diabetic Heart from Ischemia/Reperfusion Injury in Variable Hyperglycemia Duration Settings by a Glucose Transporter Type 4-Mediated Pathway

  • Aisha Al-Kouh,
  • Fawzi Babiker,
  • Maie Al-Bader

DOI
https://doi.org/10.3390/ph16020238
Journal volume & issue
Vol. 16, no. 2
p. 238

Abstract

Read online

Background: Diabetes mellitus (DM) is a risk factor for cardiovascular diseases, specifically, the ischemic heart diseases (IHD). The renin–angiotensin system (RAS) affects the heart directly and indirectly. However, its role in the protection of the heart against I/R injury is not completely understood. The aim of the current study was to evaluate the efficacy of the angiotensin-converting enzyme (ACE) inhibitor and Angiotensin II receptor (AT1R) blocker or a combination thereof in protection of the heart from I/R injury. Methods: Hearts isolated from adult male Wistar rats (n = 8) were subjected to high glucose levels; acute hyperglycemia or streptozotocin (STZ)-induced diabetes were used in this study. Hearts were subjected to I/R injury, treated with Captopril, an ACE inhibitor; Losartan, an AT1R antagonist; or a combination thereof. Hemodynamics data were measured using a suitable software for that purpose. Additionally, infarct size was evaluated using 2,3,5-Triphenyltetrazolium chloride (TTC) staining. The levels of apoptosis markers (caspase-3 and -8), antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), nitric oxide synthase (eNOS), and glucose transporter type 4 (GLUT-4) protein levels were evaluated by Western blotting. Pro-inflammatory and anti-inflammatory cytokines levels were evaluated by enzyme-linked immunosorbent assay (ELISA). Results: Captopril and Losartan alone or in combination abolished the effect of I/R injury in hearts subjected to acute hyperglycemia or STZ-induced diabetes. There was a significant (p p < 0.05) reduced pro-inflammatory cytokines and increased GLUT-4 protein levels. Conclusions: The blockade of the RAS system protected the diabetic heart from I/R injury. This protection followed a pathway that utilizes GLUT-4 to decrease the apoptosis markers, pro-inflammatory cytokines, and to increase the anti-inflammatory cytokines. This protection seems to employ a pathway which is not involving ERK1/2 and eNOS.

Keywords