Mathematics (Oct 2023)

Properties of Topologies for the Continuous Representability of All Weakly Continuous Preorders

  • Gianni Bosi,
  • Laura Franzoi,
  • Gabriele Sbaiz

DOI
https://doi.org/10.3390/math11204335
Journal volume & issue
Vol. 11, no. 20
p. 4335

Abstract

Read online

We investigate properties of strongly useful topologies, i.e., topologies with respect to which every weakly continuous preorder admits a continuous order-preserving function. In particular, we prove that a topology is strongly useful provided that the topology generated by every family of separable systems is countable. Focusing on normal Hausdorff topologies, whose consideration is fully justified and not restrictive at all, we show that strongly useful topologies are hereditarily separable on closed sets, and we identify a simple condition under which the Lindelöf property holds.

Keywords