npj Digital Medicine (Mar 2021)

Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

  • Solveig K. Sieberts,
  • Jennifer Schaff,
  • Marlena Duda,
  • Bálint Ármin Pataki,
  • Ming Sun,
  • Phil Snyder,
  • Jean-Francois Daneault,
  • Federico Parisi,
  • Gianluca Costante,
  • Udi Rubin,
  • Peter Banda,
  • Yooree Chae,
  • Elias Chaibub Neto,
  • E. Ray Dorsey,
  • Zafer Aydın,
  • Aipeng Chen,
  • Laura L. Elo,
  • Carlos Espino,
  • Enrico Glaab,
  • Ethan Goan,
  • Fatemeh Noushin Golabchi,
  • Yasin Görmez,
  • Maria K. Jaakkola,
  • Jitendra Jonnagaddala,
  • Riku Klén,
  • Dongmei Li,
  • Christian McDaniel,
  • Dimitri Perrin,
  • Thanneer M. Perumal,
  • Nastaran Mohammadian Rad,
  • Erin Rainaldi,
  • Stefano Sapienza,
  • Patrick Schwab,
  • Nikolai Shokhirev,
  • Mikko S. Venäläinen,
  • Gloria Vergara-Diaz,
  • Yuqian Zhang,
  • the Parkinson’s Disease Digital Biomarker Challenge Consortium,
  • Yuanjia Wang,
  • Yuanfang Guan,
  • Daniela Brunner,
  • Paolo Bonato,
  • Lara M. Mangravite,
  • Larsson Omberg

DOI
https://doi.org/10.1038/s41746-021-00414-7
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).