Antioxidants (Oct 2020)

Transfer and Enzyme-Mediated Metabolism of Oxidized Phosphatidylcholine and Lysophosphatidylcholine between Low- and High-Density Lipoproteins

  • Naoko Sawada,
  • Takashi Obama,
  • Mirei Mizuno,
  • Kiyoshi Fukuhara,
  • Sanju Iwamoto,
  • Toshihiro Aiuchi,
  • Tomohiko Makiyama,
  • Hiroyuki Itabe

DOI
https://doi.org/10.3390/antiox9111045
Journal volume & issue
Vol. 9, no. 11
p. 1045

Abstract

Read online

Oxidized low-density lipoprotein (oxLDL) and oxidized high-density lipoprotein (oxHDL), known as risk factors for cardiovascular disease, have been observed in plasma and atheromatous plaques. In a previous study, the content of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) species stayed constant in isolated in vivo oxLDL but increased in copper-induced oxLDL in vitro. In this study, we prepared synthetic deuterium-labeled 1-palmitoyl lysoPC and palmitoyl-glutaroyl PC (PGPC), a short chain-oxPC to elucidate the metabolic fate of oxPC and lysoPC in oxLDL in the presence of HDL. When LDL preloaded with d13-lysoPC was mixed with HDL, d13-lysoPC was recovered in both the LDL and HDL fractions equally. d13-LysoPC decreased by 50% after 4 h of incubation, while d13-PC increased in both fractions. Diacyl-PC production was abolished by an inhibitor of lecithin-cholesterol acyltransferase (LCAT). When d13-PGPC-preloaded LDL was incubated with HDL, d13-PGPC was transferred to HDL in a dose-dependent manner when both LCAT and lipoprotein-associated phospholipase A2 (Lp-PLA2) were inhibited. Lp-PLA2 in both HDL and LDL was responsible for the hydrolysis of d13-PGPC. These results suggest that short chain-oxPC and lysoPC can transfer between lipoproteins quickly and can be enzymatically converted from oxPC to lysoPC and from lysoPC to diacyl-PC in the presence of HDL.

Keywords