Remote Sensing (Apr 2023)

Mapping Pluvial Flood-Induced Damages with Multi-Sensor Optical Remote Sensing: A Transferable Approach

  • Arnaud Cerbelaud,
  • Gwendoline Blanchet,
  • Laure Roupioz,
  • Pascal Breil,
  • Xavier Briottet

DOI
https://doi.org/10.3390/rs15092361
Journal volume & issue
Vol. 15, no. 9
p. 2361

Abstract

Read online

Pluvial floods caused by extreme overland flow inland account for half of all flood damage claims each year along with fluvial floods. In order to increase confidence in pluvial flood susceptibility mapping, overland flow models need to be intensively evaluated using observations from past events. However, most remote-sensing-based flood detection techniques only focus on the identification of degradations and/or water pixels in the close vicinity of overflowing streams after heavy rainfall. Many occurrences of pluvial-flood-induced damages such as soil erosion, gullies, landslides and mudflows located further away from the stream are thus often unrevealed. To fill this gap, a transferable remote sensing fusion method called FuSVIPR, for Fusion of Sentinel-2 & Very high resolution Imagery for Pluvial Runoff, is developed to produce damage-detection maps. Based on very high spatial resolution optical imagery (from Pléiades satellites or airborne sensors) combined with 10 m change images from Sentinel-2 satellites, the Random Forest and U-net machine/deep learning techniques are separately trained and compared to locate pluvial flood footprints on the ground at 0.5 m spatial resolution following heavy weather events. In this work, three flash flood events in the Aude and Alpes-Maritimes departments in the South of France are investigated, covering over more than 160 km2 of rural and periurban areas between 2018 and 2020. Pluvial-flood-detection accuracies hover around 75% (with a minimum area detection ratio for annotated ground truths of 25%), and false-positive rates mostly below 2% are achieved on all three distinct events using a cross-site validation framework. FuSVIPR is then further evaluated on the latest devastating flash floods of April 2022 in the Durban area (South Africa), without additional training. Very good agreement with the impact maps produced in the context of the International Charter “Space and Major Disasters” are reached with similar performance figures. These results emphasize the high generalization capability of this method to locate pluvial floods at any time of the year and over diverse regions worldwide using a very high spatial resolution visible product and two Sentinel-2 images. The resulting impact maps have high potential for helping thorough evaluation and improvement of surface water inundation models and boosting extreme precipitation downscaling at a very high spatial resolution.

Keywords