Haematologica (Sep 2012)

Erythroid lineage-restricted expression of Jak2V617F is sufficient to induce a myeloproliferative disease in mice

  • Hajime Akada,
  • Saeko Akada,
  • Robert E. Hutchison,
  • Golam Mohi

DOI
https://doi.org/10.3324/haematol.2011.059113
Journal volume & issue
Vol. 97, no. 9

Abstract

Read online

The JAK2V617F mutation has been found in most cases of Ph-negative myeloproliferative neoplasms. Recent studies have shown that expression of Jak2V617F in the hematopoietic compartment causes marked expansion of erythroid progenitors and their transformation to cytokine-independence. To determine if erythroid progenitors are the target cells for induction and propagation of Jak2V617F-evoked myeloproliferative neoplasm, we used a conditional Jak2V617F knock-in mouse and an erythroid-lineage specific EpoRCre line. Erythroid-specific expression of heterozygous or homozygous Jak2V617F resulted in a polycythemia-like phenotype characterized by increase in hematocrit and hemoglobin, increased red blood cells, erythropoietin-independent erythroid colonies and splenomegaly. Transplantation of Jak2V617F-expressing erythroid progenitors from the diseased mice into secondary recipients could not propagate the disease. Our results suggest that erythroid lineage-restricted expression of Jak2V617F is sufficient to induce a polycythemia-like disease in a gene-dose dependent manner. Jak2V617F mutation, however, does not confer leukemia stem cell-like properties to erythroid progenitors.