Ecology and Evolution (Feb 2024)
Could hybridization increase the establishment success of the biological control agent Aphalara itadori (Hemiptera: Aphalaridae) against invasive knotweeds?
Abstract
Abstract Intraspecific hybridization between distinct populations could increase the fitness and adaptive potential of biological control agents that often have low genetic diversity and can be inbred due to long‐term laboratory rearing often at small population sizes. Hybridization can also alter host preference and performance when the parental insect populations are adapted to different host plants. We investigated the effects of hybridization between two populations (Northern and Southern) of the psyllid, Aphalara itadori, that have different fitness on three invasive knotweed species (Japanese, giant, and Bohemian). Fecundity, host choice, and developmental success of second‐generation reciprocal hybrids and the parental psyllid populations were compared on the three knotweed species in multiple‐choice tests. Hybridization did not increase fecundity. All three knotweed species were accepted for oviposition without preference by the Southern and the two hybrid psyllid populations. The northern psyllid population laid the most eggs on Bohemian knotweeds but those were maladaptive choices since almost all eggs failed to develop. The developmental success of the parental psyllid populations was highest on the knotweed species they were originally collected from, on Japanese knotweed of the Southern psyllids and giant knotweed of the Northern psyllids. Hybrids had intermediate or higher survival on given knotweed hosts compared to their parents. These results can inform release tactics of A. itadori in different regions especially where there appear to be climatic and/or host mismatches such as in Michigan. In southern Michigan, based on climate the Northern psyllid population should be released. However, the most common knotweed species in the region are Bohemian and Japanese knotweeds that do not support the development of the Northern psyllids. In this case, hybrids that may carry cold adaptations of the Northern psyllids but have better developmental success on the prevailing knotweed species may be considered for release to increase establishment success.
Keywords