Вестник СибАДИ (Mar 2020)
POLYMINERAL COMPOSITE BINDERS FOR FOAM CONCRETE: FEATURES OF HYDRATION AND HARDENING
Abstract
Introduction. The paper devotes to the features of hydration and hardening of polymineral composite binders. The authors carry out the complex research of the phase composition, hydration and structure formation processes of hardened composite binders with active mineral additives by X-ray phase analysis, differential scanning calorimetry and electron microscopy. The study using a Tescan MIRA 3 scanning electron microscope reveals differences in the microstructure of hardened binders and the authors confirm the results by microprobe studies. The authors study the hydration of the composite binder prepared on the basis of Portland cement and mineral components. Moreover, the paper demonstrates the dynamics of the system’s heat dissipation from the moment of mixing with water and hardening up to 24 hours and up to 72 hours by the expressed bond of dQ / dt = f (t) using a differential calorimeter.Methods and materials. The authors carried out experimental studies at Belgorod State Technological University named after V.G. Shukhov, at the Department of Building Materials, Products and Structures, at the High Technology Center and “BelGTASM-Certificate” Test Center. Therefore, the authors used the existing basic research methods, including modern physicochemical methods of analysis: X-ray phase, scanning electron microscopy, etc. The paper determined the main characteristics of raw materials, composite binders and foam concrete using standard methods and regulatory requirements.Results. The authors obtained the results that testified the peculiarities of hydration and hardening processes of polymineral composite binders on the basis of Portland cement and mineral additives: opoka marl and fly ash.Conclusion. The research establishes the hydration and hardening processes of polymineral composite binders. As a result, the authors demonstrate that the opoka marl introduced into the cement leads to the increased hydration in the induction and accelerated periods and also increases the hydration completeness of the main clinker minerals due to the manifestation of the pozzolanic reaction and the active binding of blocking Portlandite, as well as to the higher concentration of accumulated neoplasms, second generation calcium hydrosilicates.Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.
Keywords