BMC Musculoskeletal Disorders (May 2021)
Key indicators of repetitive overuse-induced neuromuscular inflammation and fibrosis are prevented by manual therapy in a rat model
Abstract
Abstract Background We examined the effectiveness of a manual therapy consisting of forearm skin rolling, muscle mobilization, and upper extremity traction as a preventive treatment for rats performing an intensive lever-pulling task. We hypothesized that this treatment would reduce task-induced neuromuscular and tendon inflammation, fibrosis, and sensorimotor declines. Methods Sprague-Dawley rats performed a reaching and lever pulling task for a food reward, 2 h/day, 3 days/week, for 12 weeks, while simultaneously receiving the manual therapy treatment 3 times per week for 12 weeks to either the task-involved upper extremities (TASK-Tx), or the lower extremities as an active control group (TASK-Ac). Results were compared to similarly treated control rats (C-Tx and C-Ac). Results Median nerves and forearm flexor muscles and tendons of TASK-Ac rats showed higher numbers of inflammatory CD68+ and fibrogenic CD206+ macrophages, particularly in epineurium, endomysium and epitendons than TASK-Tx rats. CD68+ and CD206+ macrophages numbers in TASK-Tx rats were comparable to the non-task control groups. TASK-Ac rats had more extraneural fibrosis in median nerves, pro-collagen type I levels and immunoexpression in flexor digitorum muscles, and fibrogenic changes in flexor digitorum epitendons, than TASK-Tx rats (which showed comparable responses as control groups). TASK-Ac rats showed cold temperature, lower reflexive grip strength, and task avoidance, responses not seen in TASK-Tx rats (which showed comparable responses as the control groups). Conclusions Manual therapy of forelimbs involved in performing the reaching and grasping task prevented the development of inflammatory and fibrogenic changes in forearm nerves, muscle, and tendons, and sensorimotor declines.
Keywords