Journal of Marine Science and Engineering (Jul 2024)
Free-Drop Experimental and Simulation Study on the Ultimate Bearing Capacity of Stiffened Plates with Different Stiffnesses under Slamming Loads
Abstract
Differing from previous studies on free-drop tests, this study focuses on the ultimate bearing capacity and failure mechanism of the ship’s bow under slamming loads. A prototype ship’s bow is selected to design two simplified stiffened plates with different stiffeners, and the lateral slamming loads used are equivalent to flare slamming loads. Free-drop tests of the two simplified models are conducted, and the test setups and procedures are provided. The experimental results of slamming pressures and structural responses are obtained. By comparing with the simulation results obtained by Arbitrary Lagrangian-Eulerian (ALE) fluid–structure coupling, the convergence study, symmetry, and independence verifications are carried out. Finally, the dynamic ultimate bearing capacity of stiffened plates with different stiffnesses under lateral slamming loads is studied. The results show that stiffeners enhance the ability of stiffened plates to resist plastic deformation under slamming loads, and T-section stiffeners can provide greater resistance to plastic deformation than other types.
Keywords