AIMS Mathematics (Mar 2024)

YOLOv7-FIRE: A tiny-fire identification and detection method applied on UAV

  • Baoshan Sun,
  • Kaiyu Bi,
  • Qiuyan Wang

DOI
https://doi.org/10.3934/math.2024526
Journal volume & issue
Vol. 9, no. 5
pp. 10775 – 10801

Abstract

Read online

Fire is a common but serious disaster, which poses a great threat to human life and property. Therefore, fire-smoke detection technology is of great significance in various fields. In order to improve the detection ability of tiny-fire, so as to realize the prediction and suppression of fire as soon as possible, we proposed an efficient and accurate tiny-fire detection method based on the optimized YOLOv7, and we named the improved model YOLOv7-FIRE. First, we introduced the BiFormer into YOLOv7 to make the network pay more attention to the fire-smoke area. Second, we introduced the NWD technique to enhance the perception of the algorithm for small targets, and provided richer semantic information by modeling the context information around the target. Finally, CARAFE was applied for content-aware feature reorganization, which preserved the details and texture information in the image and improved the quality of fire-smoke detection. Furthermore, in order to improve the robustness of the improved algorithm, we expanded the fire-smoke dataset. The experimental results showed that YOLOv7-FIRE as significantly better than the previous algorithm in detection accuracy and recall rate, the Precision increased from 75.83% to 82.31%, and the Recall increased from 66.43% to 74.02%.

Keywords