Geochemistry, Geophysics, Geosystems (Oct 2023)

Emergence of the Loa Mantle Component in the Hawaiian Islands Based on the Geochemistry of Kauaʻi Shield‐Stage Basalts

  • Nicole M. B. Williamson,
  • Dominique Weis,
  • James S. Scoates,
  • Michael O. Garcia

DOI
https://doi.org/10.1029/2023GC010980
Journal volume & issue
Vol. 24, no. 10
pp. n/a – n/a

Abstract

Read online

Abstract Kauaʻi shield‐stage lavas are central to understanding the origin of the distinct Kea and Loa Hawaiian geochemical trends in Hawaiian basalts. These trends reflect two geochemically distinct sides in the Hawaiian plume, with Loa to the southwest and Kea to the northeast. The geochemistry and Sr‐Nd‐Hf isotopic compositions of shield‐stage lavas from Kauaʻi show a transition from Kea to Loa across the island with the Loa mantle source becoming dominant as the volcano grew. This geochemical transition is gradual from west to east Kauaʻi and supports the hypothesis that the Kauaʻi volcano sampled both sides of the bilateral Hawaiian plume, a phenomenon that is unusual for a Hawaiian volcano. Notably, Kauaʻi marks the arrival of progressively larger volumes of Loa compositions within the Hawaiian mantle plume. The new data from Kauaʻi, combined with an updated and comprehensive database of Hawaiian shield‐stage major element oxides, trace element concentrations, and isotopic compositions normalized to the same standard values, allows for the Pb‐Sr‐Nd‐Hf isotopic compositions of the Average Loa (‘ALOA’) common geochemical component to be estimated. Despite the bilateral Loa‐Kea geochemical trend beginning at Molokaʻi, Loa compositions dominate the erupted volume of Hawaiian volcanoes younger than 3 Ma, validating the volumetric importance of the Loa source in the lower mantle portion of the Hawaiian plume.